skip to main content


Search for: All records

Creators/Authors contains: "Johnston, David T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The triple oxygen isotope composition (Δ’ 17 O) of sulfate minerals is widely used to constrain ancient atmospheric p O 2 / p CO 2 and rates of gross primary production. The utility of this tool is based on a model that sulfate oxygen carries an isotope fingerprint of tropospheric O 2 incorporated through oxidative weathering of reduced sulfur minerals, particularly pyrite. Work to date has targeted Proterozoic environments (2.5 billion to 0.542 billion years ago) where large isotope anomalies persist; younger timescale records, which would ground ancient environmental interpretation in what we know from modern Earth, are lacking. Here we present a high-resolution record of the δ 18 O and Δ’ 17 O in marine sulfate for the last 130 million years of Earth history. This record carries a Δ’ 17 O close to 0o, suggesting that the marine sulfate reservoir is under strict control by biogeochemical cycling (namely, microbial sulfate reduction), as these reactions follow mass-dependent fractionation. We identify no discernible contribution from atmospheric oxygen on this timescale. We interpret a steady fractional contribution of microbial sulfur cycling (terrestrial and marine) over the last 100 million years, even as global weathering rates are thought to vary considerably. 
    more » « less
  2. Abstract

    The biogeochemical fluxes that cycle oxygen (O2) play a critical role in regulating Earth’s climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O2 are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O2 production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O2 content, and that they have predictable, fixed isotope effects. Despite its widespread use, there are major elements of this approach that remain uncharacterized, including the TOI dynamics of respiration by marine heterotrophic bacteria and abiotic O2 sinks such as the photochemical oxidation of dissolved organic carbon (DOC). Here, we report the TOI fractionation for O2 utilization by two model marine heterotrophs and by abiotic photo-oxidation of representative terrestrial and coastal marine DOC. We demonstrate that TOI slopes associated with these processes span a significant range of the mass-dependent domain (λ = 0.499 to 0.521). A sensitivity analysis reveals that even under moderate productivity and photo-oxidation scenarios, true gross oxygen production may deviate from previous estimates by more than 20% in either direction. By considering a broader suite of oxygen cycle reactions, our findings challenge current gross oxygen production estimates and highlight several paths forward to better understanding the marine oxygen and carbon cycles.

     
    more » « less
  3. null (Ed.)
    The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period. 
    more » « less
  4. The mass-independent minor oxygen isotope compositions (Δ′17O) of atmospheric O2andCO2are primarily regulated by their relative partial pressures,pO2/pCO2. Pyrite oxidation during chemical weathering on land consumesO2and generates sulfate that is carried to the ocean by rivers. The Δ′17O values of marine sulfate deposits have thus been proposed to quantitatively track ancient atmospheric conditions. This proxy assumes directO2incorporation into terrestrial pyrite oxidation-derived sulfate, but a mechanistic understanding of pyrite oxidation—including oxygen sources—in weathering environments remains elusive. To address this issue, we present sulfate source estimates and Δ′17O measurements from modern rivers transecting the Annapurna Himalaya, Nepal. Sulfate in high-elevation headwaters is quantitatively sourced by pyrite oxidation, but resulting Δ′17O values imply no direct troposphericO2incorporation. Rather, our results necessitate incorporation of oxygen atoms from alternative,17O-enriched sources such as reactive oxygen species. Sulfate Δ′17O decreases significantly when moving into warm, low-elevation tributaries draining the same bedrock lithology. We interpret this to reflect overprinting of the pyrite oxidation-derived Δ′17O anomaly by microbial sulfate reduction and reoxidation, consistent with previously described major sulfur and oxygen isotope relationships. The geologic application of sulfate Δ′17O as a proxy for pastpO2/pCO2should consider both 1) alternative oxygen sources during pyrite oxidation and 2) secondary overprinting by microbial recycling.

     
    more » « less